$B_{\mathrm{dR}}^+$-그라스만يان에 대한 해석적 위상의 충분성
혼합 특성을 지닌 기하학적 국소 Langlands 프로그램에서 중요한 역할을 하는 $B_{\mathrm{dR}}^+$-아핀 그라스만يان은, 환원 그룹 G에 대해 에탈 뭉치화(또는 동등하게 v-뭉치화)로 정의될 수 있습니다. 본 논문에서는 대수화 및 근사 기법과 Grothendieck-Serre 추측의 알려진 경우들을 결합하여 $B_{\mathrm{dR}}^+$-아핀 그라스만يان의 경우 해석적 위상만으로도 이 뭉치화에 충분함을 보입니다. 즉, $B_{\mathrm{dR}}^+$-아핀 그라스만يان이 앞서 언급한 presheaf quotient LG/L^+G의 해석적 뭉치화와 일치함을 보입니다.