本研究は、定常および非定常、線形および非線形の偏微分方程式およびPDE系に対する目的指向型事後誤差制御と適応有限要素法(AFEM)について包括的に取り扱っている。
まず、目的指向型誤差制御の必要性と背景について説明する。従来の誤差推定は、全体的なノルムに基づいていたが、実際には特定の量のみが関心の対象となることが多い。そこで、目的関数Jを導入し、J(u) - J(uh)の誤差制御に焦点を当てる。
次に、随伴問題の導入と、それを用いた誤差表現式を示す。この誤差表現式は、計算可能ではないため、近似空間を用いた誤差推定子を導出する。効率性と信頼性の理論的結果を得るために、飽和仮定を用いる。
さらに、誤差推定子を離散化誤差と反復誤差の部分に分解し、それぞれの性質を明らかにする。離散化誤差推定子は、メッシュ適応に利用される。
最後に、効果度指標を導入し、理論的な上限と下限を示す。
全体として、本研究は目的指向型誤差制御と適応性の重要な理論的および実用的な側面を包括的に扱っている。
To Another Language
from source content
arxiv.org
Key Insights Distilled From
by Bernhard End... at arxiv.org 04-03-2024
https://arxiv.org/pdf/2404.01738.pdfDeeper Inquiries