toplogo
로그인

Double-Loop Quasi-Monte Carlo Estimator for Nested Integration


핵심 개념
Introducing a novel DLQMC estimator for nested integration problems to improve efficiency and reduce computational costs.
초록

1. Introduction

  • Evaluating Expected Information Gain (EIG) is crucial in computational science and statistics.
  • Techniques based on Quasi-Monte Carlo (QMC) methods have focused on enhancing inner integral approximation efficiency.
  • A novel approach, DLQMC estimator, extends efforts to address inner and outer expectations simultaneously.

2. Brief Overview of Monte Carlo and Randomized Quasi-Monte Carlo Integration

  • MC method approximates integrals using random points.
  • QMC method achieves better convergence rates for certain integrands.
  • RQMC method improves efficiency while maintaining a low-discrepancy structure.

3. Nested Integration

  • DLQMC estimator defined for nested integrals.
  • DLMC estimator for nested integrals has limitations due to bias and variance.
  • DLQMC estimator aims to reduce required samples and improve efficiency.

4. Numerical Results

  • DLQMC estimator's bias and variance analyzed.
  • Optimal work for DLQMC estimator derived for specified error tolerance.
edit_icon

요약 맞춤 설정

edit_icon

AI로 다시 쓰기

edit_icon

인용 생성

translate_icon

소스 번역

visual_icon

마인드맵 생성

visit_icon

소스 방문

통계
"The total work of the optimized DLQMC estimator for a specified error tolerance TOL > 0 is given by W ∗ DLQ ∝ TOL−(2/(1+β) + 1/(1+δ + γη))"
인용구
"The DLQMC estimator for nested integration problems to improve efficiency and reduce computational costs." "DLQMC estimator aims to reduce required samples and improve efficiency."

더 깊은 질문

질문 1

DLQMC 추정자를 다른 계산 문제에 어떻게 적용할 수 있습니까? 답변 1 여기에

질문 2

실제 응용 프로그램에서 DLQMC 추정자의 잠재적인 제한 사항은 무엇입니까? 답변 2 여기에

질문 3

DLQMC의 원칙을 확장하여 다른 계산 알고리즘을 최적화하는 방법은 무엇입니까? 답변 3 여기에
0
star