본 논문에서는 제약 만족 문제(CSP) 인스턴스의 스파시피케이션에 있어 '비중복성'이라는 개념의 중요성을 강조하며, 모든 CSP가 본질적으로 얼마나 스파시파이될 수 있는지 정확하게 보여줍니다.
This research paper demonstrates that the non-redundancy of a constraint satisfaction problem (CSP) essentially determines its optimal sparsification size, achieving near-optimal bounds up to polylogarithmic factors.
The authors present efficient algorithms for sparsifying instances of affine and symmetric constraint satisfaction problems (CSPs), significantly extending the classes of CSPs known to admit nearly linear-size sparsifiers. They also provide a complete classification of the sparsifiability of Boolean CSPs.