본 연구 논문에서는 그래프 동형성 문제, 특히 트리 정규화 문제를 다항식을 이용하여 해결하는 새로운 결정론적 로그스페이스 알고리즘을 제시합니다.
기존 Lindell의 알고리즘은 복잡한 재귀와 세밀한 경우 분석을 통해 트리 정규화를 수행했습니다. 반면 본 논문에서 제시하는 알고리즘은 Miller-Reif의 트리 동형성 판별 알고리즘에서 영감을 받아, 단일 변수 다항식과 아이젠슈타인 판별법을 활용하여 트리 정규화를 수행합니다.
본 알고리즘은 입력 트리의 각 정점에 대해 유일한 단일 변수 다항식을 생성합니다. 이때, 다항식의 차수는 트리의 크기에 의해 제한되며, 아이젠슈타인 판별법을 통해 다항식의 기약성을 보장합니다. 결과적으로 생성된 다항식 자체가 트리의 정규 형태로 사용될 수 있습니다.
본 논문에서 제시된 알고리즘은 Lindell의 알고리즘에 비해 개념적으로 단순하며, 산술식 평가 알고리즘을 활용하여 로그스페이스에서 구현 가능합니다. 또한, 다변수 다항식을 사용하는 Miller-Reif 알고리즘과 달리 단일 변수 다항식을 사용하기 때문에 계수의 수가 적어 트리 정규화에 효율적입니다.
본 논문에서는 제시된 알고리즘이 라벨이 지정된 트리 (labelled trees)와 k-트리와 같은 다른 유형의 그래프에도 적용 가능함을 보여줍니다. 특히, 블록 트리(block-trees)의 경우 라벨이 지정된 트리 정규화 알고리즘을 사용하여 로그스페이스에서 정규 형태를 계산할 수 있습니다.
본 논문에서 제시된 다항식 기반 트리 정규화 알고리즘은 기존 알고리즘에 비해 개념적으로 단순하고 효율적이며, 다양한 유형의 그래프에 적용 가능하다는 장점을 가지고 있습니다.
На другой язык
из исходного контента
arxiv.org
Дополнительные вопросы