The Generalized Uncertainty Principle (GUP), incorporating quantum gravity effects, significantly modifies the spontaneous emission and excitation rates of an accelerated atom interacting with a quantum scalar field, particularly amplifying these rates for atoms in uniform circular motion.
This paper investigates the non-Markovian dynamics of a comoving Unruh-DeWitt (UDW) detector interacting with a massless scalar field in de Sitter space with α-vacua and explores the use of quantum Fisher information (QFI) as a tool to distinguish different thermalization paths of the detector.
이 논문은 자기쌍대 타웁-NUT 시공간과 그 단일 복사본인 자기쌍대 다이온에서 질량이 없는 자유 장 방정식의 정확한 해와 트리 레벨 2-점 진폭을 유도하여, 이러한 배경에서의 양자 장론에 대한 새로운 통찰력을 제공합니다.
우주 팽창 시, 자유 스칼라 양자 장의 에너지 밀도와 압력은 고전적인 자유 스트리밍 해와 다르게 나타나며, 특히 팽창률이 특정 임계값을 초과하면 압력이 큰 음수 값을 가질 수 있다.
충격 평면파 시공간에서 관성 अन्रुह-डिव्हिट 검출기의 응답 함수는 검출기의 궤적과 무관하며, 이는 시공간 대칭성을 보존하는 진공 상태를 의미한다. 또한, 충격파는 입자 생성을 유발하지 않지만, 양자장에 독특한 각인을 남기며, 이는 재규격화된 응답 함수를 통해 분석될 수 있다.
The response function of an inertial Unruh-deWitt detector interacting with a scalar field in an impulsive plane wave spacetime remains invariant regardless of the detector's trajectory, indicating the preservation of the vacuum state under spacetime symmetries. However, a distinct quantum imprint of the shockwave persists, characterized by a specific profile in the renormalized response function.
Closed-path trajectories of moving mirrors, despite leaving no spacetime imprint, generate quantum particles and can exhibit thermal-like radiation characteristics, challenging assumptions about thermality in quantum field theory.
This paper presents a novel formalism for calculating scattering amplitudes of quantum particles in de Sitter spacetime, demonstrating that these amplitudes can be derived using a generalized Dyson's formula and exhibit frequency spread due to the spacetime's geometry.
This paper proposes a novel formulation of quantum field theory in curved spacetime, specifically in de Sitter spacetime, that addresses the long-standing problem of unitarity loss by employing a "quantum first approach" and utilizing discrete spacetime transformations.
A theoretical study demonstrates that a localized quantum detector, modeled as a two-level system, can detect the expansion and spatial properties of a simplified (1+1)-dimensional Milne universe, revealing information about the universe's global structure through local quantum measurements.