Der Artikel beginnt mit einer Einführung in Poisson-Punktmuster und Informationsdivergenzmaße wie Rényi-Divergenz und Tsallis-Divergenz.
In Abschnitt 3 wird ein theoretischer Rahmen für Tsallis-Divergenzen von sigma-endlichen Maßen entwickelt. Es wird gezeigt, dass Tsallis-Divergenzen eine Darstellung als lineare Kombination von Rényi-Divergenzen von Poisson-Verteilungen zulassen. Außerdem werden Charakterisierungen von absoluter Stetigkeit und gegenseitiger Singularität in Bezug auf Tsallis-Divergenzen hergeleitet.
Abschnitt 4 präsentiert Hauptergebnisse zu Likelihood-Verhältnissen von Poisson-Punktmustern. Für den Fall endlicher Intensitätsmaße wird eine klassische Dichtendarstellung hergeleitet. Für den allgemeinen Fall sigma-endlicher Intensitätsmaße wird eine Formel unter Verwendung kompensierter Poisson-Integrale entwickelt.
In Abschnitt 5 werden dann Formeln für Rényi-Divergenzen, Kullback-Leibler-Divergenzen und Hellinger-Abstände von Poisson-Punktmustern präsentiert. Außerdem werden Charakterisierungen der absoluten Stetigkeit und der Existenz eines gemeinsamen dominierenden Poisson-Punktmusters hergeleitet.
Abschließend werden in Abschnitt 6 Anwendungen auf Poisson-Prozesse, zusammengesetzte Poisson-Prozesse und markierte Poisson-Punktmuster diskutiert.
Para outro idioma
do conteúdo fonte
arxiv.org
Principais Insights Extraídos De
by Lass... às arxiv.org 04-02-2024
https://arxiv.org/pdf/2404.00294.pdfPerguntas Mais Profundas